El experimento de Young
El experimento de Young, también denominado experimento de la doble rendija, fue realizado en 1801 por Thomas Young, en un intento de discernir sobre la naturaleza corpuscular u ondulatoria de la luz. Young comprobó un patrón de interferencias en la luz procedente de una fuente lejana al difractarse en el paso por dos rejillas, resultado que contribuyó a la teoría de la naturaleza ondulatoria de la luz.
Posteriormente, la experiencia ha sido considerada fundamental a la hora de demostrar la dualidad onda corpúsculo, una característica de la mecánica cuántica. El experimento también puede realizarse con electrones, protones o neutrones, produciendo patrones de interferencia similares a los obtenidos cuando se realiza con luz.
Aunque este experimento se presenta habitualmente en el contexto de la mecánica cuántica, fue diseñado mucho antes de la llegada de esta teoría para responder a la pregunta de si la luz tenía una naturaleza corpuscular o si, más bien, consistía en ondas viajando por el éter, análogamente a las ondas sonoras viajando en el aire. La naturaleza corpuscular de la luz se basaba principalmente en los trabajos de Newton. La naturaleza ondulatoria, en los trabajos clásicos de Hooke y Huygens.
Los patrones de interferencia observados restaban crédito a la teoría corpuscular. La teoría ondulatoria se mostró muy robusta hasta los comienzos del siglo XX, cuando nuevos experimentos empezaron a mostrar un comportamiento que sólo podía ser explicado por una naturaleza corpuscular de la luz. De este modo el experimento de la doble rendija y sus múltiples variantes se convirtieron en un experimento clásico por su claridad a la hora de presentar una de las principales características de la mecánica cuántica.
La forma en la que se presenta normalmente el experimento no se realizó sino hasta 1961 utilizando electrones y mostrando la dualidad onda-corpúsculo de las partículas subatómicas (Claus Jönsson, Zeitschrift für Physik, 161, 454; Electron diffraction at multiple slits, American Journal of Physics, 42, 4-11, 1974). En 1974 fue posible realizar el experimento en su forma más ambiciosa, electrón a electrón, comprobando las hipótesis mecanocuánticas predichas por Richard Feynman. Este experimento fue realizado por un grupo italiano liderado por Pier Giorgio Merli y repetido de manera más concluyente en 1989 por un equipo japonés liderado por Akira Tonomura y que trabajaba para la compañía Hitachi. El experimento de la doble rendija electrón a electrón se explica a partir de la interpretación probabilística de la trayectoria seguida por las partículas.
Formulación clásica
La formulación original de Young es muy diferente de la moderna formulación del experimento y utiliza una doble rendija. En el experimento original un estrecho haz de luz, procedente de un pequeño agujero en la entrada de la cámara, es dividido en dos por una tarjeta de una anchura de unos 0.2 mm. La tarjeta se mantiene paralela al haz que penetra horizontalmente es orientado por un simple espejo. El haz de luz tenía una anchura ligeramente superior al ancho de la tarjeta divisoria por lo que cuando ésta se posicionaba correctamente el haz era dividido en dos, cada uno pasando por un lado distinto de la pared divisoria. El resultado puede verse proyectado sobre una pared en una habitación oscurecida. Young realizó el experimento en la misma reunión de la Royal Society mostrando el patrón de interferencias producido demostrando la naturaleza ondulatoria de la luz.
Formulación moderna
La formulación moderna permite mostrar tanto la naturaleza ondulatoria de la luz como la dualidad onda-corpúsculo de la materia. En una cámara oscura se deja entrar un haz de luz por una rendija estrecha. La luz llega a una pared intermedia con dos rendijas. Al otro lado de esta pared hay una pantalla de proyección o una placa fotográfica. Cuando una de las rejillas se cubre aparece un único pico correspondiente a la luz que proviene de la rendija abierta. Sin embargo, cuando ambas están abiertas en lugar de formarse una imagen superposición de las obtenidas con las rendijas abiertas individualmente, tal y como ocurriría si la luz estuviera hecha de partículas, se obtiene una figura de interferencias con rayas oscuras y otras brillantes.
Este patrón de interferencias se explica fácilmente a partir de la interferencia de las ondas de luz al combinarse la luz que procede de dos rendijas, de manera muy similar a como las ondas en la superficie del agua se combinan para crear picos y regiones más planas. En las líneas brillantes la interferencia es de tipo "constructiva". El mayor brillo se debe a la superposición de ondas de luz coincidiendo en fase sobre la superficie de proyección. En las líneas oscuras la interferencia es "destructiva" con prácticamente ausencia de luz a consecuencia de la llegada de ondas de luz de fase opuesta (la cresta de una onda se superpone con el valle de otra).
La paradoja del experimento de Young
Esta paradoja trata de un experimento mental, un experimento ficticio no realizable en la práctica, que fue propuesto por Richard Feynman examinando teóricamente los resultados del experimento de Young analizando el movimiento de cada fotón.
Para la década de 1920, numerosos experimentos (como el efecto fotoeléctrico, el efecto Compton, y la producción de rayos x entre otros) habían demostrado que la luz interacciona con la materia únicamente en cantidades discretas, en paquetes "cuantizados" o "cuánticos" denominados fotones. Si la fuente de luz pudiera reemplazarse por una fuente capaz de producir fotones individualmente y la pantalla fuera suficientemente sensible para detectar un único fotón, el experimento de Young podría, en principio, producirse con fotones individuales con idéntico resultado.
Si una de las rendijas se cubre, los fotones individuales irían acumulándose sobre la pantalla en el tiempo creando un patrón con un único pico. Sin embargo, si ambas rendijas están abiertas los patrones de fotones incidiendo sobre la pantalla se convierten de nuevo en un patrón de líneas brillantes y oscuras. Este resultado parece confirmar y contradecir la teoría ondulatoria de la luz. Por un lado el patrón de interferencias confirma que la luz se comporta como una onda incluso si se envían partículas de una en una. Por otro lado, cada vez que un fotón de una cierta energía pasa por una de las rendijas el detector de la pantalla detecta la llegada de la misma cantidad de energía. Dado que los fotones se emiten uno a uno no pueden interferir globalmente así que no es fácil entender el origen de la "interferencia".
La teoría cuántica resuelve estos problemas postulando ondas de probabilidad que determinan la probabilidad de encontrar una partícula en un punto determinado, estas ondas de probabilidad interfieren entre sí como cualquier otra onda.
Un experimento más refinado consiste en disponer un detector en cada una de las dos rendijas para determinar por qué rendija pasa cada fotón antes de llegar a la pantalla. Sin embargo, cuando el experimento se dispone de esta manera las franjas desaparecen debido a la naturaleza indeterminista de la mecánica cuántica y al colapso de la función de onda.
Condiciones para la interferencia
Las ondas que producen interferencia han de ser "coherentes", es decir los haces provenientes de cada una de las rendijas han de mantener una fase relativa constante en el tiempo, además de tener la misma frecuencia, aunque esto último no es estrictamente necesario, puesto que puede hacerse el experimento con luz blanca. Además, ambos han de tener polarizaciones no perpendiculares. En el experimento de Young esto se consigue al hacer pasar el haz por la primera rendija, produciendo una mutilación del frente de onda en dos frentes coherentes. También es posible observar franjas de interferencia con luz natural. En este caso se observa un máximo central blanco junto a otros máximos laterales de diferentes colores.
Más allá, se observa un fondo blanco uniforme. Este fondo no está formado realmente por luz blanca, puesto que si, fijada una posición sobre la pantalla, se pone paralelo a la franja un espectrómetro por el cual se hace pasar la luz, se observan alternadamente franjas oscuras y brillantes. Esto se ha dado en llamar espectro acanalado. Las dos rendijas han de estar cerca (unas 1000 veces la longitud de onda de la luz utilizada) o en otro caso el patrón de interferencias sólo se forma muy cerca de las rendijas. La anchura de las rendijas es normalmente algo más pequeña que la longitud de onda de la luz empleada permitiendo utilizar las ondas como fuentes puntuales esféricas y reduciendo los efectos de difracción por una única rendija.
Fuente: Wikipedia
No hay comentarios:
Publicar un comentario
Los comentarios irrelevantes e irrespetuosos serán omitidos.